login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 6*a(n-1) - 9*a(n-2) + 3*a(n-3).
4

%I #28 Jan 29 2023 02:36:08

%S 0,-3,-15,-63,-252,-990,-3861,-15012,-58293,-226233,-877797,-3405564,

%T -13211910,-51254775,-198838152,-771371667,-2992450959,-11608875207,

%U -45035307612,-174709321686,-677764787229,-2629310751036,-10200109386213,-39570153919641,-153507871295037

%N a(n) = 6*a(n-1) - 9*a(n-2) + 3*a(n-3).

%C a(n) = X(2*n-1)/sqrt(3), where X(n) = 3*X(n-2) - sqrt(3)*X(n-3), with X(0)=3, X(1)=0, and X(2)=6.

%C The Berndt-type sequence number 13 for the argument 2*Pi/9 defined by the relation a(n)*sqrt(3) = s(1)^(2*n-1) - s(2)^(2*n-1) + s(4)^(2*n-1), where s(j) := 2*sin(2*Pi*j/9). For the respective sums with the even powers of sines - see A215634.

%C We note that X(n) = s(1)^n + (-s(2))^n + s(4)^n -- see Witula's book for details. Moreover the numbers of the form a(n)*3^(-1-floor((n-1)/3)) are integers.

%C The following summation formulas hold: Sum_{k=3..n} a(k) = 3*(2*a(n-1) - a(n-2) + 1), X(2*n+1) - X(1)*3^n = X(2*n+1) = -sqrt(3)*Sum_{k=1..n} X(2*(n-k))*3^(k-1), and X(2*n) - X(0)*3^n = X(2*n) - 3^(n+1) = -sqrt(3)*Sum{k=1..n} X(2*(n-k))*3^(k-1).

%D R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

%H G. C. Greubel, <a href="/A216757/b216757.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9,3).

%F a(n) = 6*a(n-1) - 9*a(n-2) + 3*a(n-3).

%F G.f.: -3*x^2*(1 - x)/(1 - 6*x + 9*x^2 - 3*x^3).

%F a(n) = Sum_{k=0..n} 3*(-1)^k*(binomial(2*n-1, n+9*k+7) - binomial(2*n-1, n+9*k+1)). - _Greg Dresden_, Jan 28 2023

%e We have s(1)^5 - s(2)^5 + s(4)^5 = 5*(s(1)^3 - s(2)^3 + s(4)^3) = -15*sqrt(3), s(1)^9 - s(2)^9 + s(4)^9 = 4*(s(1)^7 - s(2)^7 + s(4)^7) = -252*sqrt(3),

%e 39*(s(1)^11 - s(2)^11 + s(4)^11) = 10*(s(1)^13 - s(2)^13 + s(4)^13) = -38610*sqrt(3),

%e s(1)^7 - s(2)^7 + s(4)^7 = 4*(s(1)^5 - s(2)^5 + s(4)^5) + (s(1)^3 - s(2)^3 + s(4)^3) = -63*sqrt(3), and s(1)^15 - s(2)^15 + s(4)^15 = 1000*(s(1)^5 - s(2)^5 + s(4)^5) + 4*(s(1)^3 - s(2)^3 + s(4)^3) = -15012*sqrt(3).

%e We note that a(6) = 3*(a(5) + a(4) + a(3)).

%t LinearRecurrence[{6,-9,3}, {0,-3,-15}, 30]

%t CoefficientList[Series[-3*x^2*(1 - x)/(1 - 6*x + 9*x^2 - 3*x^3), {x, 0,5 0}], x] (* _G. C. Greubel_, Apr 17 2017 *)

%o (PARI) concat(0,Vec(-3*(1-x)/(1-6*x+9*x^2-3*x^3)+O(x^99))) \\ _Charles R Greathouse IV_, Oct 01 2012

%Y Cf. A215634.

%K sign,easy

%O 1,2

%A _Roman Witula_, Sep 15 2012