login
A216586
G.f.: exp( Sum_{n>=1} A002426(n)/2 * A002426(n) * x^n/n ), where A002426 is the central binomial coefficients and A002426 is the central trinomial coefficients.
1
1, 1, 5, 28, 202, 1579, 13375, 118858, 1098458, 10453452, 101872926, 1012109860, 10218226307, 104570617520, 1082633236498, 11321654913838, 119438468577559, 1269787015989428, 13592294300856138, 146390465351654178, 1585337895099162317, 17253991887494062080
OFFSET
0,3
FORMULA
Self-convolution yields A216585.
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 28*x^3 + 202*x^4 + 1579*x^5 + 13375*x^6 +...
such that
log(A(x)) = 1*1*x + 3*3*x^2/2 + 10*7*x^3/3 + 35*19*x^4/4 + 126*51*x^5/5 + 462*141*x^6/6 +...+ A001700(n)*A002426(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, binomial(2*m, m)/2*polcoeff((1+x+x^2)^m, m)*x^m/m+x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 09 2012
STATUS
approved