login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216588
Number of Hamiltonian cycles in C_4 X C_n.
3
126, 1344, 2930, 28060, 55230, 538744, 969378, 10066228, 16284862, 186362560, 265582226, 3447630284, 4238980734, 64031790664, 66561185858, 1197008258212, 1031815027710, 22548844488592, 15830131853490, 428115681210300, 240803790623806, 8188893146929816
OFFSET
3,1
COMMENTS
The sequence is not monotone, although it seems to be.
It has two monotone subsequences depending on the parity of n.
LINKS
Artem M. Karavaev, Hamilton Cycles: Flow Problem.
Eric Weisstein's World of Mathematics, Hamiltonian Cycle
Eric Weisstein's World of Mathematics, Torus Grid Graph
FORMULA
a(n) = P(n) + Q(floor(n/2)) if n is even and a(n) = P(n) + R(floor(n/2)) if n is odd, where P(n) = (2*n + 1)*cosh(2*n*arctanh(sqrt(1/3))) - (n/sqrt(3))*sinh(2*n*arctanh(sqrt(1/3))) + cos(Pi*n/2) - sin(Pi*n/2), Q(n) = (4^n - 16*3^n - 4)/3 + 8*2^(n/2)*cos(n*arctan(sqrt(7))) + 4*2^n*cosh(2*n*arctanh(sqrt(2/3))) - 2*cosh(2*n*arctanh(sqrt(1/2))), R(n) = -2*(n + 1)*(2 - (-1)^n).
G.f.: -48*x^2 - 2*x - 17/3 + (1 - x)/(x^2 + 1) + 1/(6*(2*x + 1)) + (x + 1)/(x^2 - 2*x - 1) - 1/((x - 1)^2) + (8 - 4*x^2)/(2*x^4 - x^2 + 1) + (-16 + 62*x)/(x^2 - 4*x + 1)^2 - 2/3/(x + 1) + 1/((x + 1)^2) + (17 + 3*x)/(x^2 - 4*x + 1) + (-2 - 4*x)/(2*x^2 - 4*x - 1) + 2/3/(x - 1) - 1/(6*(2*x - 1)) + (1 - x)/(x^2 + 2*x - 1) + (-2 + 4*x)/(2*x^2 + 4*x - 1) + 16/3/(3*x^2 - 1) + 2*x/(x^2 + 1)^2.
Asympt.: a(n) ~ 2*(2 + sqrt(6))^n if n is even and
a(n) ~ ((1 - 1/(2*sqrt(3)))*n + 1/2)*(2 + sqrt(3))^n if n is odd.
MAPLE
P := n -> (2*n+1)*cosh(2*n*arctanh(sqrt(1/3))) - (n/sqrt(3))*sinh(2*n*arctanh(sqrt(1/3))) + cos(Pi*n/2) - sin(Pi*n/2):
Q := n -> (4^n-16*3^n-4)/3+8*2^(n/2)*cos(n*arctan(sqrt(7))) + 4*2^n*cosh(2*n*arctanh(sqrt(2/3)))-2*cosh(2*n*arctanh(sqrt(1/2))):
R := n -> -2*(n+1)*(2-(-1)^n):
a := n -> expand(P(n)) + (1 - n mod 2)*expand(Q(floor(n/2))) + (n mod 2)*R(floor(n/2)):
seq(a(n), n=3..24);
CROSSREFS
Row 4 of A270273. Cf. A194952.
Sequence in context: A172139 A194717 A002953 * A297657 A027805 A027814
KEYWORD
nonn
AUTHOR
Artem M. Karavaev, Sep 09 2012
STATUS
approved