login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332711
Sum of all numbers in bijective base-n numeration with digit sum n.
1
0, 1, 5, 28, 203, 1936, 23517, 349504, 6149495, 124999936, 2881935953, 74300836864, 2118007738035, 66142897770496, 2245609694259557, 82351536043343872, 3244079458377786863, 136619472483668525056, 6125138252818308310041, 291271111111111111081984
OFFSET
0,3
COMMENTS
The number of numbers in bijective base-n numeration with digit sum n equals the number of compositions of n: A000079(n).
LINKS
Wikipedia, Digit sum
FORMULA
a(n) = ((n+1)^n - 2^n) / (n - 1) for n >= 2. - Peter Bala, Sep 28 2023
EXAMPLE
a(0) = 0.
a(1) = 1 = 1_bij1.
a(2) = 5 = 3 + 2 = 11_bij2 + 2_bij2.
a(3) = 28 = 13 + 7 + 5 + 3 = 111_bij3 + 21_bij3 + 12_bij3 + 3_bij3.
MAPLE
b:= proc(n, k) option remember; `if`(n=0, [1, 0], add((p->
[p[1], p[2]*k+p[1]*d])(b(n-d, k)), d=1..min(n, k)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..23);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, {1, 0}, Sum[Function[p, {p[[1]], p[[2]]*k + p[[1]]*d}][b[n - d, k]], {d, 1, Min[n, k]}]];
a[n_] := b[n, n][[2]];
a /@ Range[0, 23] (* Jean-François Alcover, Apr 23 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 20 2020
STATUS
approved