login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216497
Primes p with property that there exists a number d>0 such that numbers p-k*d, k=1...4, are four primes.
7
29, 53, 127, 131, 157, 173, 197, 227, 251, 257, 271, 283, 293, 311, 353, 373, 389, 397, 421, 443, 449, 463, 479, 509, 521, 587, 607, 613, 617, 661, 673, 677, 691, 719, 757, 761, 811, 821, 823, 839, 853, 859, 863, 881, 887, 907, 911, 941, 953, 967, 983, 997, 1013
OFFSET
1,1
COMMENTS
Conjecture: only 653 primes are not in the sequence: 2, 3, ..., 100291.
EXAMPLE
29 is in the sequence because with d=6: 23, 17, 11, 5 are all primes.
MATHEMATICA
prms = 4; fQ[p_] := Module[{d = 1}, While[prms*d < p && Union[PrimeQ[p - Range[prms]*d]] != {True}, d++]; prms*d < p]; Select[Prime[Range[2, PrimePi[1013]]], fQ] (* T. D. Noe, Sep 08 2012 *)
PROG
(PARI) is(n)=my(t); forprime(p=2, n-12, if((n-p)%4==0 && isprime((t=(n-p)/4)+p) && isprime(2*t+p) && isprime(3*t+p) && isprime(n), return(1))); 0 \\ Charles R Greathouse IV, Sep 10 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Sep 08 2012
STATUS
approved