login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216468
Primes p with property that there exists a number d>0 such that numbers p-k*d, k=1...6, are six primes.
7
907, 1307, 1439, 1459, 1669, 1879, 2089, 2141, 2351, 2713, 4139, 4759, 4969, 5179, 5417, 6047, 6101, 6353, 6779, 6793, 7919, 8369, 8663, 9049, 9349, 9491, 9533, 9623, 9769, 10099, 10691, 10883, 11083, 11213, 11369, 11399, 11621, 11789, 11887, 11923, 12097, 12119
OFFSET
1,1
COMMENTS
Conjecture: only 312722 primes are not in the sequence: 2, 3, ..., 198702899.
EXAMPLE
907 is in the sequence because with d = 150: 7, 157, 307, 457, 607, 757 are all primes.
MATHEMATICA
fQ[p_] := Module[{d = 1}, While[6*d < p && Union[PrimeQ[p - Range[6]*d]] != {True}, d++]; 6*d < p]; Select[Prime[Range[4, PrimePi[12119]]], fQ] (* T. D. Noe, Sep 07 2012 *)
PROG
(PARI) is(n)=my(t); forprime(p=2, n-20, if((n-p)%6==0 && isprime((t=(n-p)/6)+p) && isprime(2*t+p) && isprime(3*t+p) && isprime(4*t+p) && isprime(5*t+p) && isprime(n), return(1))); 0 \\ Charles R Greathouse IV, Sep 10 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Sep 07 2012
STATUS
approved