The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094383 Primes p such that d>0 exists and p-d, p-2*d and p-3*d are also primes. 9
 23, 29, 41, 43, 53, 59, 79, 83, 97, 101, 103, 107, 113, 127, 131, 139, 149, 151, 157, 163, 167, 173, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 281, 283, 293, 307, 311, 313, 317, 331, 347, 349, 353, 359, 367, 373, 383 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: only 25 primes are not in the sequence, namely 2, 3, 5, 7, 11, 13, 17, 19, 31, 37, 47, 61, 67, 71, 73, 89, 109, 137, 179, 211, 277, 337, 379, 499, 557. - Alex Ratushnyak, Sep 08 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 EXAMPLE 59=prime(17) -> 59-6=53=prime(16) -> 53-6=47=prime(15) -> 47-6=41=prime(13), therefore 59 is a term; also 59 -> 59-18=41=prime(13) -> 41-18=23=prime(9) -> 23-18=5=prime(3). MATHEMATICA prms = 3; fQ[p_] := Module[{d = 1}, While[prms*d < p && Union[PrimeQ[p - Range[prms]*d]] != {True}, d++]; prms*d < p]; Select[Prime[Range[2, PrimePi[383]]], fQ] (* T. D. Noe, Sep 08 2012 *) PROG (PARI) is(n)=my(t); forprime(p=2, n-6, if((n-p)%3==0 && isprime((t=(n-p)/3)+p) && isprime(2*t+p) && isprime(n), return(1))); 0 \\ Charles R Greathouse IV, Sep 10 2014 CROSSREFS Cf. A094382, A216495, A216496, A216497, A216498, A216468. Sequence in context: A173709 A225319 A228139 * A166565 A050207 A162658 Adjacent sequences:  A094380 A094381 A094382 * A094384 A094385 A094386 KEYWORD nonn AUTHOR Reinhard Zumkeller, Apr 28 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 18 04:48 EST 2020. Contains 332011 sequences. (Running on oeis4.)