

A216124


Primes which are the nearest integer to the geometric mean of the previous prime and the following prime.


2



3, 5, 7, 23, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The geometric mean of two primes p and q is sqrt(pq).


LINKS

Table of n, a(n) for n=1..48.


EXAMPLE

The prime before 3 is 2 and the prime after 3 is 5. 2 * 5 = 10 and the geometric mean of 2 and 5 is therefore sqrt(10) = 3.16227766..., which rounds to 3. Therefore 3 is in the sequence.
The geometric mean of 7 and 13 is 9.539392... which rounds up to 10, well short of 11, hence 11 is not in the sequence.


MAPLE

A := {}: for n from 2 to 1000 do p1 := ithprime(n1): p := ithprime(n); p2 := ithprime(n+1): if p = round(sqrt(p1*p2)) then A := `union`(A, {p}) end if end do; A := A;


MATHEMATICA

Prime[Select[Range[2, 700], Prime[#] == Round[Sqrt[Prime[#  1] Prime[# + 1]]] &]] (* Alonso del Arte, Sep 01 2012 *)


PROG

(PARI) lista(nn) = forprime (p=2, nn, if (round(sqrt(precprime(p1)*nextprime(p+1))) == p, print1(p, ", "))); \\ Michel Marcus, Apr 08 2015


CROSSREFS

Cf. A216101, A090076.
Sequence in context: A019363 A288890 A120384 * A096505 A214680 A141802
Adjacent sequences: A216121 A216122 A216123 * A216125 A216126 A216127


KEYWORD

nonn


AUTHOR

César Eliud Lozada, Sep 01 2012


EXTENSIONS

More terms from Michel Marcus, Apr 08 2015


STATUS

approved



