The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216124 Primes which are the nearest integer to the geometric mean of the previous prime and the following prime. 3

%I

%S 3,5,7,23,53,157,173,211,257,263,373,563,593,607,653,733,947,977,1103,

%T 1123,1187,1223,1367,1511,1747,1753,1907,2287,2417,2677,2903,2963,

%U 3307,3313,3637,3733,4013,4409,4457,4597,4657,4691,4993,5107,5113,5303,5387,5393

%N Primes which are the nearest integer to the geometric mean of the previous prime and the following prime.

%C The geometric mean of two primes p and q is sqrt(pq).

%e The prime before 3 is 2 and the prime after 3 is 5. 2 * 5 = 10 and the geometric mean of 2 and 5 is therefore sqrt(10) = 3.16227766..., which rounds to 3. Therefore 3 is in the sequence.

%e The geometric mean of 7 and 13 is 9.539392... which rounds up to 10, well short of 11, hence 11 is not in the sequence.

%p A := {}: for n from 2 to 1000 do p1 := ithprime(n-1): p := ithprime(n); p2 := ithprime(n+1): if p = round(sqrt(p1*p2)) then A := `union`(A, {p}) end if end do; A := A;

%t Prime[Select[Range[2, 700], Prime[#] == Round[Sqrt[Prime[# - 1] Prime[# + 1]]] &]] (* _Alonso del Arte_, Sep 01 2012 *)

%o (PARI) lista(nn) = forprime (p=2, nn, if (round(sqrt(precprime(p-1)*nextprime(p+1))) == p, print1(p, ", "))); \\ _Michel Marcus_, Apr 08 2015

%Y Cf. A216101, A090076.

%K nonn

%O 1,1

%A _César Eliud Lozada_, Sep 01 2012

%E More terms from _Michel Marcus_, Apr 08 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 04:56 EST 2022. Contains 350464 sequences. (Running on oeis4.)