login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214830 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 8. 5
1, 8, 8, 17, 33, 58, 108, 199, 365, 672, 1236, 2273, 4181, 7690, 14144, 26015, 47849, 88008, 161872, 297729, 547609, 1007210, 1852548, 3407367, 6267125, 11527040, 21201532, 38995697, 71724269, 131921498, 242641464, 446287231, 820850193, 1509778888 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See comments in A214727.

LINKS

Robert Price, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,1).

FORMULA

G.f.: (1+7*x-x^2)/(1-x-x^2-x^3).

a(n) = -A000073(n) + 7*A000073(n+1) + A000073(n+2). - G. C. Greubel, Apr 24 2019

MATHEMATICA

CoefficientList[Series[(x^2-7*x-1)/(x^3+x^2+x-1), {x, 0, 40}], x] (* Wesley Ivan Hurt, Jun 18 2014 *)

LinearRecurrence[{1, 1, 1}, {1, 8, 8}, 40] (* G. C. Greubel, Apr 24 2019 *)

PROG

(PARI) my(x='x+O('x^40)); Vec((1+7*x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 24 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+7*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019

(Sage) ((1+7*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019

(GAP) a:=[1, 8, 8];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019

CROSSREFS

Cf. A000213, A000288, A000322, A000383, A060455, A136175, A141036, A141523, A214825-A214831.

Sequence in context: A168409 A135405 A006784 * A168456 A346532 A298166

Adjacent sequences:  A214827 A214828 A214829 * A214831 A214832 A214833

KEYWORD

nonn,easy

AUTHOR

Abel Amene, Aug 07 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 09:32 EDT 2021. Contains 347714 sequences. (Running on oeis4.)