login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141036 Tribonacci-like sequence; a(0)=2, a(1)=1, a(2)=1, a(n) = a(n-1) + a(n-2) + a(n-3). 14
2, 1, 1, 4, 6, 11, 21, 38, 70, 129, 237, 436, 802, 1475, 2713, 4990, 9178, 16881, 31049, 57108, 105038, 193195, 355341, 653574, 1202110, 2211025, 4066709, 7479844, 13757578, 25304131, 46541553, 85603262, 157448946, 289593761 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

I used the short MATLAB program from the zip file link altered to produce a Lucas version of the tribonacci numbers.

No term is divisible by 8 or 9. - Vladimir Joseph Stephan Orlovsky, Mar 24 2011

a(A246517(n)) = A246518(n). - Reinhard Zumkeller, Sep 15 2014

REFERENCES

Martin Gardner, Mathematical Circus, Random House, New York, 1981, p. 165.

LINKS

Robert Price, Table of n, a(n) for n = 0..1000

Martin Burtscher, Igor Szczyrba, RafaƂ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.

T.-X. He, Impulse Response Sequences and Construction of Number Sequence Identities, J. Int. Seq. 16 (2013) #13.8.2

Index entries for linear recurrences with constant coefficients, signature (1,1,1).

FORMULA

a(0)=2; a(1)=1; a(2)=1; a(n) = a(n-1)+a(n-2)+a(n-3).

a(n)=2*A000213(n)-A000073(n+1). O.g.f.: (-2+x+2x^2)/(-1+x+x^2+x^3). - R. J. Mathar, Aug 04 2008

EXAMPLE

fz(1)=2;fz(2)=1;fz(3)=1;

for k=4:n

fz(k)=fz(k-1)+fz(k-2)+fz(k-3);

end

y=fz(n);

MATHEMATICA

a[0] = 2; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; Table[a[n], {n, 0, 29}] (* Alonso del Arte, Mar 24 2011 *)

LinearRecurrence[{1, 1, 1}, {2, 1, 1}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)

PROG

(Haskell)

a141036 n = a141036_list !! n

a141036_list = 2 : 1 : 1 : zipWith3 (((+) .) . (+))

   a141036_list (tail a141036_list) (drop 2 a141036_list)

-- Reinhard Zumkeller, Sep 15 2014

(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 1, 1]^n*[2; 1; 1])[1, 1] \\ Charles R Greathouse IV, Jun 15 2015

CROSSREFS

Cf. A000073, A001644 (Lucas tribonacci sequence), A246517, A246518.

Sequence in context: A034870 A264622 A275017 * A294947 A265232 A011016

Adjacent sequences:  A141033 A141034 A141035 * A141037 A141038 A141039

KEYWORD

nonn,easy

AUTHOR

Matt Wynne (matwyn(AT)verizon.net), Jul 30 2008

EXTENSIONS

Corrected offset and indices in formulas, R. J. Mathar, Aug 05 2008

Better name from T. D. Noe, Aug 06 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 12:40 EDT 2018. Contains 316528 sequences. (Running on oeis4.)