The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141036 Tribonacci-like sequence; a(0)=2, a(1)=1, a(2)=1, a(n) = a(n-1) + a(n-2) + a(n-3). 14
 2, 1, 1, 4, 6, 11, 21, 38, 70, 129, 237, 436, 802, 1475, 2713, 4990, 9178, 16881, 31049, 57108, 105038, 193195, 355341, 653574, 1202110, 2211025, 4066709, 7479844, 13757578, 25304131, 46541553, 85603262, 157448946, 289593761 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS I used the short MATLAB program from the zip file link altered to produce a Lucas version of the tribonacci numbers. No term is divisible by 8 or 9. - Vladimir Joseph Stephan Orlovsky, Mar 24 2011 a(A246517(n)) = A246518(n). - Reinhard Zumkeller, Sep 15 2014 REFERENCES Martin Gardner, Mathematical Circus, Random House, New York, 1981, p. 165. LINKS Robert Price, Table of n, a(n) for n = 0..1000 Martin Burtscher, Igor Szczyrba, RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5. T.-X. He, Impulse Response Sequences and Construction of Number Sequence Identities, J. Int. Seq. 16 (2013) #13.8.2 Index entries for linear recurrences with constant coefficients, signature (1,1,1). FORMULA a(0)=2; a(1)=1; a(2)=1; a(n) = a(n-1) + a(n-2) + a(n-3). From R. J. Mathar, Aug 04 2008: (Start) a(n) = 2*A000213(n) - A000073(n+1). O.g.f.: (2-x-2*x^2)/(1-x-x^2-x^3). (End) MATHEMATICA a[0]=2; a[1]=1; a[2]=1; a[n_]:= a[n]=a[n-1]+a[n-2]+a[n-3]; Table[a[n], {n, 0, 40}] (* Alonso del Arte, Mar 24 2011 *) LinearRecurrence[{1, 1, 1}, {2, 1, 1}, 40] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *) PROG (Haskell) a141036 n = a141036_list !! n a141036_list = 2 : 1 : 1 : zipWith3 (((+) .) . (+))    a141036_list (tail a141036_list) (drop 2 a141036_list) -- Reinhard Zumkeller, Sep 15 2014 (PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 1, 1]^n*[2; 1; 1])[1, 1] \\ Charles R Greathouse IV, Jun 15 2015 (PARI) my(x='x+O('x^40)); Vec((2-x-2*x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 22 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-x-2*x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 22 2019 (Sage) ((2-x-2*x^2)/(1-x-x^2-x^3)).series(x, 41).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019 CROSSREFS Cf. A000073, A000213, A001644 (Lucas tribonacci sequence), A246517, A246518. Sequence in context: A324224 A264622 A275017 * A294947 A265232 A011016 Adjacent sequences:  A141033 A141034 A141035 * A141037 A141038 A141039 KEYWORD nonn,easy AUTHOR Matt Wynne (matwyn(AT)verizon.net), Jul 30 2008 EXTENSIONS Corrected offset and indices in formulas, R. J. Mathar, Aug 05 2008 Better name from T. D. Noe, Aug 06 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 07:59 EST 2020. Contains 332069 sequences. (Running on oeis4.)