login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214559 Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 9(x1+1)//8(x2)//7(x3+1)//6(x2)//5(x3+1)//4(x2)//3(x4)//2(x2)//1(x3)//0//9(x2)//8(x3+1)//7(x2)//6(x4)//5(x2)//4(x3+1)//3(x2)//2(x3+1)//1(x2)//0(x1)//1. 6
97508421, 9753086421, 9975084201, 975330866421, 997530864201, 999750842001, 97533308666421, 97755108844221, 99753308664201, 99975308642001, 99997508420001, 9753333086666421, 9775531088644221, 9975333086664201, 9977551088442201, 9997533086642001, 9999753086420001 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The sign // denotes concatenation of digits in the definition, and d(x) denotes x repetitions of d, x>=0.

Adding digits that share the same "x_i" parameter (where i=1,2,3,4) yields sums divisible by 9 (that is, with the digital root being equal to 9): i=1, 9+0=9; i=2, 8+6+4+2+9+7+5+3+1=45; i=3, 7+5+1+8+4+2=27; i=4, 3+6=9. - Alexander R. Povolotsky, Mar 19 2015

LINKS

Syed Iddi Hasan, Table of n, a(n) for n = 0..9554

FORMULA

If d(x) denotes x repetitions of the digit d, then a(n)=9(x1+1)8(x2)7(x3+1)6(x2)5(x3+1)4(x2)3(x4)2(x2)1(x3)09(x2)8(x3+1)7(x2)6(x4)5(x2)4(x3+1)3(x2)2(x3+1)1(x2)0(x1)1, where x1,x2,x3,x4>=0.

EXAMPLE

9753086421 is a fixed point of the mapping for x1=0, x2=0, x3=0, x4=1.

CROSSREFS

Cf. A214555, A214556, A214557, A214558.

Sequence in context: A114662 A250964 A075010 * A184151 A096710 A251357

Adjacent sequences:  A214556 A214557 A214558 * A214560 A214561 A214562

KEYWORD

nonn,base

AUTHOR

Syed Iddi Hasan, Jul 20 2012

EXTENSIONS

More terms using b-file by Michel Marcus, Mar 27 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 11:01 EST 2018. Contains 317447 sequences. (Running on oeis4.)