login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214559
Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 9(x1+1)//8(x2)//7(x3+1)//6(x2)//5(x3+1)//4(x2)//3(x4)//2(x2)//1(x3)//0//9(x2)//8(x3+1)//7(x2)//6(x4)//5(x2)//4(x3+1)//3(x2)//2(x3+1)//1(x2)//0(x1)//1.
6
97508421, 9753086421, 9975084201, 975330866421, 997530864201, 999750842001, 97533308666421, 97755108844221, 99753308664201, 99975308642001, 99997508420001, 9753333086666421, 9775531088644221, 9975333086664201, 9977551088442201, 9997533086642001, 9999753086420001
OFFSET
0,1
COMMENTS
The sign // denotes concatenation of digits in the definition, and d(x) denotes x repetitions of d, x>=0.
Adding digits that share the same "x_i" parameter (where i=1,2,3,4) yields sums divisible by 9 (that is, with the digital root being equal to 9): i=1, 9+0=9; i=2, 8+6+4+2+9+7+5+3+1=45; i=3, 7+5+1+8+4+2=27; i=4, 3+6=9. - Alexander R. Povolotsky, Mar 19 2015
LINKS
FORMULA
If d(x) denotes x repetitions of the digit d, then a(n)=9(x1+1)8(x2)7(x3+1)6(x2)5(x3+1)4(x2)3(x4)2(x2)1(x3)09(x2)8(x3+1)7(x2)6(x4)5(x2)4(x3+1)3(x2)2(x3+1)1(x2)0(x1)1, where x1,x2,x3,x4>=0.
EXAMPLE
9753086421 is a fixed point of the mapping for x1=0, x2=0, x3=0, x4=1.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Syed Iddi Hasan, Jul 20 2012
EXTENSIONS
More terms using b-file by Michel Marcus, Mar 27 2015
STATUS
approved