login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 9(x1+1)//8(x2)//7(x3+1)//6(x2)//5(x3+1)//4(x2)//3(x4)//2(x2)//1(x3)//0//9(x2)//8(x3+1)//7(x2)//6(x4)//5(x2)//4(x3+1)//3(x2)//2(x3+1)//1(x2)//0(x1)//1.
6

%I #31 Apr 06 2015 06:58:11

%S 97508421,9753086421,9975084201,975330866421,997530864201,

%T 999750842001,97533308666421,97755108844221,99753308664201,

%U 99975308642001,99997508420001,9753333086666421,9775531088644221,9975333086664201,9977551088442201,9997533086642001,9999753086420001

%N Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 9(x1+1)//8(x2)//7(x3+1)//6(x2)//5(x3+1)//4(x2)//3(x4)//2(x2)//1(x3)//0//9(x2)//8(x3+1)//7(x2)//6(x4)//5(x2)//4(x3+1)//3(x2)//2(x3+1)//1(x2)//0(x1)//1.

%C The sign // denotes concatenation of digits in the definition, and d(x) denotes x repetitions of d, x>=0.

%C Adding digits that share the same "x_i" parameter (where i=1,2,3,4) yields sums divisible by 9 (that is, with the digital root being equal to 9): i=1, 9+0=9; i=2, 8+6+4+2+9+7+5+3+1=45; i=3, 7+5+1+8+4+2=27; i=4, 3+6=9. - _Alexander R. Povolotsky_, Mar 19 2015

%H Syed Iddi Hasan, <a href="/A214559/b214559.txt">Table of n, a(n) for n = 0..9554</a>

%F If d(x) denotes x repetitions of the digit d, then a(n)=9(x1+1)8(x2)7(x3+1)6(x2)5(x3+1)4(x2)3(x4)2(x2)1(x3)09(x2)8(x3+1)7(x2)6(x4)5(x2)4(x3+1)3(x2)2(x3+1)1(x2)0(x1)1, where x1,x2,x3,x4>=0.

%e 9753086421 is a fixed point of the mapping for x1=0, x2=0, x3=0, x4=1.

%Y Cf. A214555, A214556, A214557, A214558.

%K nonn,base

%O 0,1

%A _Syed Iddi Hasan_, Jul 20 2012

%E More terms using b-file by _Michel Marcus_, Mar 27 2015