login
A214557
Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 8(x1+1)//6(x1+1)//4(x1+1)//3(x2)//2(x1)//1//9(x1+1)//7(x1+1)//6(x2)//5(x1+1)//3(x1+1)//1(x1)//2.
4
864197532, 86431976532, 8643319766532, 864333197666532, 86433331976666532, 886644219977553312, 8643333319766666532, 88664432199776553312, 864333333197666666532, 8866443321997766553312, 86433333331976666666532, 886644333219977666553312
OFFSET
0,1
COMMENTS
The sign // denotes concatenation of digits in the definition, and d(x) denotes x repetitions of d, x>=0.
LINKS
FORMULA
If d(x) denotes x repetitions of the digit d, then a(n)=8(x1+1)6(x1+1)4(x1+1)3(x2)2(x1)19(x1+1)7(x1+1)6(x2)5(x1+1)3(x1+1)1(x1)2, where x1,x2>=0.
EXAMPLE
86431976532 is a fixed point of the mapping for x1=0, x2=1.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Syed Iddi Hasan, Jul 20 2012
EXTENSIONS
Terms a(5) and beyond from b-file by Andrew Howroyd, Feb 05 2018
STATUS
approved