|
|
A214016
|
|
Poulet numbers (2-pseudoprimes) of the form 7200*n^2 + 8820*n + 2701.
|
|
2
|
|
|
2701, 18721, 49141, 93961, 226801, 314821, 534061, 665281, 1537381, 1755001, 1987021, 2233441, 3059101, 3363121, 4014361, 5489641, 6313681, 8134561, 9131401, 10185841, 13073941, 13694761, 18443701, 21474181, 27331921, 30058381, 30996001, 32914441, 34890481
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Poulet numbers were obtained for the following values of n: 0, 1, 2, 3, 5, 6, 8, 9, 14, 15, 16, 17, 20, 21, 23, 27, 29, 33, 35, 37, 42, 43, 50, 54, 61, 64, 65, 67, 69.
Conjecture: There are infinitely many Poulet numbers of the form 7200*n^2 + 8820*n + 2701.
A214016 and A214017 represent the only potentially infinite sequences of Poulet numbers known to the author.
|
|
LINKS
|
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Poulet Number
|
|
PROG
|
(PARI) forstep(n=0, 1e4, 60, t=2*n^2+147*n+2701; if(Mod(2, t)^t==2, print1(t", "))) \\ Charles R Greathouse IV, Dec 08 2014
|
|
CROSSREFS
|
Cf. A001567, A214017.
Sequence in context: A246888 A153513 A333130 * A254513 A254506 A254813
Adjacent sequences: A214013 A214014 A214015 * A214017 A214018 A214019
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Marius Coman, Jul 01 2012
|
|
STATUS
|
approved
|
|
|
|