login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213741
Numbers n such that the sum of the first n primes is divisible by exactly 3 prime powers (not including 1).
1
5, 13, 20, 23, 24, 35, 39, 41, 42, 43, 47, 50, 56, 61, 62, 63, 67, 68, 69, 70, 73, 76, 78, 81, 86, 90, 98, 112, 123, 126, 128, 134, 143, 145, 147, 160, 165, 166, 172, 176, 180, 182, 186, 189, 191, 193, 196, 197, 200, 215, 220, 222, 223, 225, 227, 229, 238
OFFSET
1,1
COMMENTS
This is to "triprimes" or "3-almost primes" A014612 as A213650 is to semiprimes A001358.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
{n such that A007504(n) is included in A014612.}
EXAMPLE
a(1) = 5 because the sum of first 5 primes is 28 = 2^2 * 7 which has exactly three prime power factors (not including 1).
a(2) = 13 because the sum of first 13 primes is 238 = 2 * 7 * 17 which has exactly three prime power factors (not including 1).
a(3) = 20 because the sum of first 20 primes is 639 = 3^2 * 71.
MATHEMATICA
ps = 0; t = {}; Do[ps = ps + Prime[n]; If[Total[Transpose[FactorInteger[ps]][[2]]] == 3, AppendTo[t, n]], {n, 300}]; t (* T. D. Noe, Jun 27 2012 *)
PROG
(PARI) list(lim)=my(v=List(), k, s); forprime(p=2, prime(lim\1), k++; if(bigomega(s+=p)==3, listput(v, k))); Vec(v) \\ Charles R Greathouse IV, Feb 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Jun 19 2012
STATUS
approved