login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055045
Numbers of the form 4^i*(8*j+5).
5
5, 13, 20, 21, 29, 37, 45, 52, 53, 61, 69, 77, 80, 84, 85, 93, 101, 109, 116, 117, 125, 133, 141, 148, 149, 157, 165, 173, 180, 181, 189, 197, 205, 208, 212, 213, 221, 229, 237, 244, 245, 253, 261, 269, 276, 277, 285, 293, 301, 308, 309, 317
OFFSET
1,1
COMMENTS
Numbers not of the form x^2+2y^2+6z^2.
LINKS
L. E. Dickson, Integers represented by positive ternary quadratic forms, Bull. Amer. Math. Soc. 33 (1927), 63-70. See Theorem XI.
L. J. Mordell, A new Waring's problem with squares of linear forms, Quart. J. Math., 1 (1930), 276-288 (see p. 283).
FORMULA
a(n) = 6n + O(log n). - Charles R Greathouse IV, Dec 19 2013
PROG
(PARI) is(n)=n/=4^valuation(n, 4); n%8==5 \\ Charles R Greathouse IV and V. Raman, Dec 19 2013
(Haskell)
a055045 n = a055045_list !! (n-1)
a055045_list = filter ((== 5) . (flip mod 8) . f) [1..] where
f x = if r == 0 then f x' else x where (x', r) = divMod x 4
-- Reinhard Zumkeller, Jan 02 2014
(Python)
from itertools import count, islice
def A055045_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:not (m:=(~n&n-1).bit_length())&1 and (n>>m)&7==5, count(max(startvalue, 1)))
A055045_list = list(islice(A055045_gen(), 30)) # Chai Wah Wu, Jul 09 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 01 2000
STATUS
approved