login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213604
Cumulative sums of digital roots of A005891(n).
1
1, 7, 14, 18, 24, 28, 35, 41, 42, 48, 55, 59, 65, 69, 76, 82, 83, 89, 96, 100, 106, 110, 117, 123, 124, 130, 137, 141, 147, 151, 158, 164, 165, 171, 178, 182, 188, 192, 199, 205, 206, 212, 219, 223, 229, 233, 240, 246, 247, 253, 260, 264, 270, 274, 281, 287
OFFSET
0,2
FORMULA
a(n+9) = -a(n) + a(n+1) + a(n+8), a(0)=1, a(1)=7, a(2)=14, a(3)=18, a(4)=24, a(5)=28, a(6)=35, a(7)=41, a(8)=42.
G.f.: (1+6*x+7*x^2+4x^3+6*x^4+4*x^5+7*x^6+6*x^7) / ((x-1)^2 * (1+x+x^2+x^3+x^4+x^5+x^6+x^7)).
MATHEMATICA
CoefficientList[Series[(1 + 6*x + 7*x^2 + 4 x^3 + 6*x^4 + 4*x^5 + 7*x^6 +
6*x^7)/((x - 1)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 7, 14, 18, 24, 28, 35, 41, 42}, 50](* G. C. Greubel, Feb 26 2017 *)
PROG
(PARI) x='x+O('x^50); Vec((1+6*x+7*x^2+4x^3+6*x^4+4*x^5+7*x^6+6*x^7) / ((x-1)^2 * (1+x+x^2+x^3+x^4+x^5+x^6+x^7))) \\ G. C. Greubel, Feb 26 2017
CROSSREFS
Cf. A005891.
Sequence in context: A025021 A326767 A131439 * A374004 A102041 A232488
KEYWORD
nonn,base
AUTHOR
STATUS
approved