OFFSET
1,1
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
FORMULA
From Colin Barker, Oct 19 2015: (Start)
a(n) = 5+(1/2+i)*(-i)^n+(1/2-i)*i^n+5*n for n>1, where i = sqrt(-1).
G.f.: -x*(5*x^4-4*x^3-4*x^2-7) / ((x-1)^2*(x^2+1)).
(End)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4). - Wesley Ivan Hurt, Apr 17 2023
EXAMPLE
32+2=34, 34+4=38.
MATHEMATICA
NestList[#+Mod[#, 10]&, 7, 60] (* Harvey P. Dale, Oct 16 2023 *)
PROG
(PARI) a=[7, 14, 18, 26, 32]; a=concat(a, vector(50)); for(n=6, #a, a[n]=2*a[n-1]-2*a[n-2]+2*a[n-3]-a[n-4]); a \\ Charles R Greathouse IV, Oct 03 2011
(PARI) a(n) = if(n==1, 7, 5+(1/2+I)*(-I)^n+(1/2-I)*I^n+5*n) \\ Colin Barker, Oct 19 2015
(PARI) Vec(-x*(5*x^4-4*x^3-4*x^2-7)/((x-1)^2*(x^2+1)) + O(x^100)) \\ Colin Barker, Oct 19 2015
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Samantha Stones (devilsdaughter2000(AT)hotmail.com), Dec 25 2004
STATUS
approved