login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Cumulative sums of digital roots of A005891(n).
1

%I #16 Feb 27 2017 02:55:56

%S 1,7,14,18,24,28,35,41,42,48,55,59,65,69,76,82,83,89,96,100,106,110,

%T 117,123,124,130,137,141,147,151,158,164,165,171,178,182,188,192,199,

%U 205,206,212,219,223,229,233,240,246,247,253,260,264,270,274,281,287

%N Cumulative sums of digital roots of A005891(n).

%H G. C. Greubel, <a href="/A213604/b213604.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,1,-1).

%F a(n+9) = -a(n) + a(n+1) + a(n+8), a(0)=1, a(1)=7, a(2)=14, a(3)=18, a(4)=24, a(5)=28, a(6)=35, a(7)=41, a(8)=42.

%F G.f.: (1+6*x+7*x^2+4x^3+6*x^4+4*x^5+7*x^6+6*x^7) / ((x-1)^2 * (1+x+x^2+x^3+x^4+x^5+x^6+x^7)).

%t CoefficientList[Series[(1 + 6*x + 7*x^2 + 4 x^3 + 6*x^4 + 4*x^5 + 7*x^6 +

%t 6*x^7)/((x - 1)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)), {x, 0, 50}], x] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,1,-1}, {1,7,14,18,24, 28,35,41,42}, 50](* _G. C. Greubel_, Feb 26 2017 *)

%o (PARI) x='x+O('x^50); Vec((1+6*x+7*x^2+4x^3+6*x^4+4*x^5+7*x^6+6*x^7) / ((x-1)^2 * (1+x+x^2+x^3+x^4+x^5+x^6+x^7))) \\ _G. C. Greubel_, Feb 26 2017

%Y Cf. A005891.

%K nonn,base

%O 0,2

%A _Alexander R. Povolotsky_, Jun 15 2012