login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213387
a(n) = 5*2^(n-1) - 2 - 3*n.
2
0, 2, 9, 26, 63, 140, 297, 614, 1251, 2528, 5085, 10202, 20439, 40916, 81873, 163790, 327627, 655304, 1310661, 2621378, 5242815, 10485692, 20971449, 41942966, 83886003, 167772080, 335544237, 671088554, 1342177191
OFFSET
1,2
COMMENTS
Create an array m(i,j) as follows: m(1,j) = j*(j-1)/2 in the top row, m(i,1) = (i-1)^2 in the left column, and m(i,j) = m(i,j-1) + m(i-1,j) recursively in the main body, j >= 1, i >= 1. The sum of the terms in an antidiagonal is one term in this sequence, a(n) = Sum_{k=1..n} m(n-k+1,k).
FORMULA
a(n) = A095151(n-1) + 2*A000295(n-1).
G.f.: x^2*(2+x) / ( (1-2*x)*(1-x)^2 ). - R. J. Mathar, Jun 29 2012
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3); a(1)=0, a(2)=2, a(3)=9. - Harvey P. Dale, Sep 28 2012
EXAMPLE
For n=5, m(5,1)=16, m(4,2)=15, m(3,3)=11, m(2,4)=11, m(1,5)=10 gives the sum 63 = 2*A000295(4) + A095151(4) = 2*11 + 41.
MATHEMATICA
Table[5*2^(n-1)-2-3n, {n, 30}] (* or *) LinearRecurrence[{4, -5, 2}, {0, 2, 9}, 30] (* Harvey P. Dale, Sep 28 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
J. M. Bergot, Jun 28 2012
STATUS
approved