login
A136429
a(n) = Sum_{k=0..n} F(k+1)^2*F(n-k+1)^2 where F = Fibonacci numbers (A000045).
1
1, 2, 9, 26, 84, 250, 747, 2182, 6323, 18132, 51624, 146004, 410677, 1149578, 3204477, 8899502, 24634620, 67990414, 187154271, 513939214, 1408246247, 3851081256, 10512259920, 28647203880, 77946605545, 211782868754
OFFSET
0,2
COMMENTS
Also: the self-convolution of A007598, after A007598(0) is dropped. - R. J. Mathar, Aug 05 2008
a(n) is the number of ways to tile a 2 X (n+1) board with squares and dominoes with exactly one vertical domino. - Greg Dresden and Zijie He, Jun 14 2022
LINKS
Emanuele Munarini, Apr 01 2008, Table of n, a(n) for n = 0..100
Ömer Egecioglu, Elif Saygi, and Zülfükar Saygi, The Mostar index of Fibonacci and Lucas cubes, arXiv:2101.04740 [math.CO], 2021. Mentions this sequence.
FORMULA
G.f.: (1-x)^2/((1+x)^2*(1-3x+x^2)^2).
Recurrence: a(n+6) = 4a(n+5) - 10a(n+3) + 4a(n+1) - a(n).
MATHEMATICA
LinearRecurrence[{4, 0, -10, 0, 4, -1}, {1, 2, 9, 26, 84, 250}, 30] (* Harvey P. Dale, Oct 03 2024 *)
PROG
(PARI) a(n) = sum(k=0, n, fibonacci(k+1)^2*fibonacci(n-k+1)^2); \\ Michel Marcus, Jan 13 2021
CROSSREFS
Sequence in context: A014150 A213387 A215184 * A091469 A125670 A222660
KEYWORD
easy,nonn
AUTHOR
Emanuele Munarini, Apr 01 2008
STATUS
approved