login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213231 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^8)^3). 8
1, 1, 4, 25, 176, 1431, 12526, 117850, 1167446, 12080563, 129326575, 1422908670, 15999766613, 183070661566, 2124252427416, 24929036429880, 295250330398281, 3523043486823439, 42294807342916249, 510274778010082846, 6181011777164665559, 75112032752942278141 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare g.f. to:

(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).

(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).

(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).

(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

LINKS

Table of n, a(n) for n=0..21.

EXAMPLE

G.f.: A(x) = 1 + x + 4*x^2 + 25*x^3 + 176*x^4 + 1431*x^5 + 12526*x^6 +...

Related expansions:

A(x)^8 = 1 + 8*x + 60*x^2 + 480*x^3 + 3998*x^4 + 34968*x^5 + 318888*x^6 +...

1/A(-x*A(x)^8)^3 = 1 + 3*x + 18*x^2 + 121*x^3 + 987*x^4 + 8646*x^5 + 82244*x^6 +...

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^3, x, -x*subst(A^8, x, x+x*O(x^n)))) ); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A213225, A213226, A213227, A213228, A213229, A213230, A213232, A213233.

Cf. A213091, A213092, A213093, A213094, A213095, A213096, A213098.

Cf. A213099, A213100, A213101, A213102, A213103, A213104, A213105.

Cf. A213108, A213109, A213110, A213111, A213112, A213113.

Sequence in context: A006348 A213608 A324169 * A051820 A246539 A166697

Adjacent sequences:  A213228 A213229 A213230 * A213232 A213233 A213234

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 06 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 09:07 EDT 2021. Contains 345397 sequences. (Running on oeis4.)