login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213230 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^8)^2). 8
1, 1, 3, 18, 115, 902, 7722, 70784, 678251, 6670586, 66851992, 677328214, 6903177354, 70490174298, 718856047396, 7304677030708, 73837797474235, 741722190452840, 7402780597473820, 73459355234486763, 726095774886910232, 7170907377415662763, 71063833561266044578 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare g.f. to:

(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).

(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).

(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).

(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

LINKS

Table of n, a(n) for n=0..22.

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 115*x^4 + 902*x^5 + 7722*x^6 +...

Related expansions:

A(x)^8 = 1 + 8*x + 52*x^2 + 368*x^3 + 2754*x^4 + 22112*x^5 + 189344*x^6 +...

1/A(-x*A(x)^8)^2 = 1 + 2*x + 13*x^2 + 78*x^3 + 634*x^4 + 5488*x^5 + 50969*x^6 +...

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^2, x, -x*subst(A^8, x, x+x*O(x^n)))) ); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A213225, A213226, A213227, A213228, A213229, A213231, A213232, A213233.

Cf. A213091, A213092, A213093, A213094, A213095, A213096, A213098.

Cf. A213099, A213100, A213101, A213102, A213103, A213104, A213105.

Cf. A213108, A213109, A213110, A213111, A213112, A213113.

Sequence in context: A199259 A163471 A054122 * A201695 A074566 A291076

Adjacent sequences:  A213227 A213228 A213229 * A213231 A213232 A213233

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 06 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 2 03:14 EDT 2022. Contains 354984 sequences. (Running on oeis4.)