OFFSET
0,2
COMMENTS
See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=2,q=5.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..399 (terms 0..100 from Stanislav Sykora)
FORMULA
See formula in A212846, setting p=2,q=5.
a(n) = Sum_{k=0..n} k! * (-2)^k * 7^(n-k) * Stirling2(n,k). - Seiichi Manyama, Mar 13 2022
EXAMPLE
polylog(-5,-2/5)*7^6/5 = 598.
MATHEMATICA
f[n_] := PolyLog[-n, -2/5] 7^(n + 1)/5; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
PROG
(PARI) in A212846; run limnpq(nmax, 2, 5)
(PARI) a(n) = sum(k=0, n, k!*(-2)^k*7^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Stanislav Sykora, Jun 06 2012
STATUS
approved