login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213135
Polylogarithm li(-n,-2/7) multiplied by (9^(n+1))/7.
3
1, -2, -10, 6, 870, 7878, -90810, -3599514, -20802330, 1466193798, 42164160390, -227736774234, -44798359213530, -896477167975482, 32992662466363590, 2308652347666959846, 16747450938362727270, -3885313022633595475962
OFFSET
0,2
COMMENTS
See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=2,q=7.
LINKS
FORMULA
See formula in A212846, setting p=2,q=7.
a(n) = Sum_{k=0..n} k! * (-2)^k * 9^(n-k) * Stirling2(n,k). - Seiichi Manyama, Mar 13 2022
EXAMPLE
polylog(-5,-2/7)*9^6/7 = 7878.
MATHEMATICA
f[n_] := PolyLog[-n, -2/7] 9^(n + 1)/7; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
PROG
(PARI) in A212846; run limnpq(nmax, 2, 7)
(PARI) a(n) = sum(k=0, n, k!*(-2)^k*9^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Stanislav Sykora, Jun 06 2012
STATUS
approved