login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213063
Balanced numbers (of order one): k-almost primes that are the average of three successive k-almost primes.
1
5, 34, 53, 68, 86, 94, 102, 122, 142, 157, 171, 173, 185, 188, 194, 202, 204, 211, 214, 218, 245, 257, 258, 262, 263, 285, 289, 302, 314, 321, 338, 342, 358, 366, 371, 373, 394, 404, 407, 413, 415, 422, 429, 435, 446, 471, 489, 490, 493, 497, 507, 513, 517, 524, 535, 562
OFFSET
1,1
COMMENTS
Balanced numbers of order one: defined by the union of balanced primes A006562, balanced semiprimes A213025, balanced 3-almost primes (68, 102, 171, 188, 245, 258, 285, 338, 366, 404, 429, 435, 507, 524,..), balanced 4-almost primes (204, 342, 490, 513,..),.., balanced k-almost primes - all of order one.
Balanced numbers of order two are 79, 119, 148, 205, 218, 281, 299, 302, 339, 349, 410, 439, 493,.., defined by the union of balanced primes of order two of A082077, balanced semiprimes of order two (119, 205, 218, 299, 302, 339, 493,..), balanced 3-almost primes of order two (148, 410, 604, 609, 642..),.., balanced k-almost primes of order two.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
PROG
(PARI) list(lim)={
lim=lim\1+.5;
my(v=List(), L=log(lim)\log(2), left=vector(L), middle=vector(L), t);
for(n=3, 2*lim,
t=bigomega(n);
if(t>L, next);
if(middle[t],
if(2*middle[t] == left[t] + n,
if(middle[t] < lim,
listput(v, middle[t])
,
if(vecmin(middle) > lim, return(vecsort(Vec(v))))
)
);
left[t]=middle[t];
middle[t]=n
,
if(left[t], middle[t]=n, left[t]=n)
)
)
}; \\ Charles R Greathouse IV, Jun 14 2012
KEYWORD
nonn
AUTHOR
Gerasimov Sergey, Jun 03 2012
STATUS
approved