OFFSET
1,1
COMMENTS
Balanced numbers of order one: defined by the union of balanced primes A006562, balanced semiprimes A213025, balanced 3-almost primes (68, 102, 171, 188, 245, 258, 285, 338, 366, 404, 429, 435, 507, 524,..), balanced 4-almost primes (204, 342, 490, 513,..),.., balanced k-almost primes - all of order one.
Balanced numbers of order two are 79, 119, 148, 205, 218, 281, 299, 302, 339, 349, 410, 439, 493,.., defined by the union of balanced primes of order two of A082077, balanced semiprimes of order two (119, 205, 218, 299, 302, 339, 493,..), balanced 3-almost primes of order two (148, 410, 604, 609, 642..),.., balanced k-almost primes of order two.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
PROG
(PARI) list(lim)={
lim=lim\1+.5;
my(v=List(), L=log(lim)\log(2), left=vector(L), middle=vector(L), t);
for(n=3, 2*lim,
t=bigomega(n);
if(t>L, next);
if(middle[t],
if(2*middle[t] == left[t] + n,
if(middle[t] < lim,
listput(v, middle[t])
,
if(vecmin(middle) > lim, return(vecsort(Vec(v))))
)
);
left[t]=middle[t];
middle[t]=n
,
if(left[t], middle[t]=n, left[t]=n)
)
)
}; \\ Charles R Greathouse IV, Jun 14 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Gerasimov Sergey, Jun 03 2012
STATUS
approved