The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212690 Number of (w,x,y,z) with all terms in {1,...,n} and 2|w-x|<=n+|y-z|. 3
 0, 1, 16, 75, 236, 567, 1172, 2157, 3672, 5861, 8920, 13031, 18436, 25355, 34076, 44857, 58032, 73897, 92832, 115171, 141340, 171711, 206756, 246885, 292616, 344397, 402792, 468287, 541492, 622931, 713260, 813041, 922976, 1043665 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n)+A212689(n)=n^4. For a guide to related sequences, see A211795. LINKS Table of n, a(n) for n=0..33. Index entries for linear recurrences with constant coefficients, signature (3, -1, -5, 5, 1, -3, 1). FORMULA a(n)=3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7). G.f.: (x + 13*x^2 + 28*x^3 + 32*x^4 + 9*x^5 + x^6)/(1 - 3*x + x^2 + 5*x^3 - 5*x^4 - x^5 + 3*x^6 - x^7). MATHEMATICA t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[2 Abs[w - x] <= n + Abs[y - z], s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 40]] (* A212690 *) LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {0, 1, 16, 75, 236, 567, 1172}, 40] CROSSREFS Cf. A211795. Sequence in context: A232863 A200786 A250353 * A244835 A189949 A103111 Adjacent sequences: A212687 A212688 A212689 * A212691 A212692 A212693 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 25 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 23:30 EST 2023. Contains 367662 sequences. (Running on oeis4.)