login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212688
Number of (w,x,y,z) with all terms in {1,...,n} and 2|w-x|>=n+|y-z|.
3
0, 0, 4, 14, 44, 98, 200, 356, 600, 940, 1420, 2050, 2884, 3934, 5264, 6888, 8880, 11256, 14100, 17430, 21340, 25850, 31064, 37004, 43784, 51428, 60060, 69706, 80500, 92470, 105760, 120400, 136544, 154224, 173604, 194718, 217740
OFFSET
0,3
COMMENTS
a(n)+A212687(n)=n^4.
For a guide to related sequences, see A211795.
FORMULA
a(n)=3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7).
G.f.: (4*x^2 + 2*x^3 + 6*x^4)/(1 - 3*x + x^2 + 5*x^3 - 5*x^4 - x^5 + 3*x^6 - x^7).
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[2 Abs[w - x] >= n + Abs[y - z], s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212688 *)
%/2 (* integers *)
LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {0, 0, 4, 14, 44, 98, 200}, 40]
CROSSREFS
Cf. A211795.
Sequence in context: A049539 A037528 A292718 * A261451 A084613 A099063
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 25 2012
STATUS
approved