login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212687
Number of (w,x,y,z) with all terms in {1,...,n} and 2|w-x|<n+|y-z|.
3
0, 1, 12, 67, 212, 527, 1096, 2045, 3496, 5621, 8580, 12591, 17852, 24627, 33152, 43737, 56656, 72265, 90876, 112891, 138660, 168631, 203192, 242837, 287992, 339197, 396916, 461735, 534156, 614811, 704240, 803121, 912032, 1031697
OFFSET
0,3
COMMENTS
a(n)+A212688(n)=n^4.
For a guide to related sequences, see A211795.
FORMULA
a(n) = 3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7).
G.f.: (x + 9*x^2 + 32*x^3 + 28*x^4 + 13*x^5 + x^6)/(1 - 3*x + x^2 + 5*x^3 - 5*x^4 - x^5 + 3*x^6 - x^7).
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[2 Abs[w - x] < n + Abs[y - z], s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212687 *)
LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {0, 1, 12, 67, 212, 527, 1096}, 40]
CROSSREFS
Cf. A211795.
Sequence in context: A032167 A039925 A091074 * A117088 A199415 A200204
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 25 2012
STATUS
approved