login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212507
Number of (w,x,y,z) with all terms in {1,...,n} and w<2x and y<=2z.
2
0, 1, 12, 56, 168, 399, 810, 1480, 2496, 3965, 6000, 8736, 12312, 16891, 22638, 29744, 38400, 48825, 61236, 75880, 93000, 112871, 135762, 161976, 191808, 225589, 263640, 306320, 353976, 406995, 465750, 530656, 602112, 680561, 766428
OFFSET
0,3
COMMENTS
For a guide to related sequences, see A211795.
FORMULA
a(n) = 3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7).
G.f.: x*(1+2*x)*(1+7*x+7*x^2+3*x^3)/((1+x)^2*(1-x)^5). [Bruno Berselli, May 31 2012]
a(n) = (2*n*(9*n^3+6*n^2+1)-(2*n-1)*(-1)^n-1)/32. [Bruno Berselli, May 31 2012]
a(n) = A006578(n) * A077043(n). - Alois P. Heinz, May 31 2012
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w < 2 x && y <= 2 z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212507 *)
CoefficientList[Series[x (1 + 2 x) (1 + 7 x + 7 x^2 + 3 x^3)/((1 + x)^2 (1 - x)^5), {x, 0, 34}], x] (* Bruno Berselli, May 31 2012 *)
PROG
(Magma) [(2*n*(9*n^3+6*n^2+1)-(2*n-1)*(-1)^n-1)/32: n in [0..34]]; // Bruno Berselli, May 31 2012
CROSSREFS
Cf. A211795.
Sequence in context: A035005 A001386 A046998 * A212508 A331771 A009430
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 19 2012
STATUS
approved