login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212001
Triangle read by rows: T(n,k) = sum of all parts of the last n-k+1 shells of n.
4
1, 4, 3, 9, 8, 5, 20, 19, 16, 11, 35, 34, 31, 26, 15, 66, 65, 62, 57, 46, 31, 105, 104, 101, 96, 85, 70, 39, 176, 175, 172, 167, 156, 141, 110, 71, 270, 269, 266, 261, 250, 235, 204, 165, 94, 420, 419, 416, 411, 400, 385, 354, 315, 244, 150, 616, 615
OFFSET
1,2
COMMENTS
The set of partitions of n contains n shells (see A135010). It appears that the last k shells of n contain p(n-k) parts of size k, where p(n) = A000041(n). See also A182703.
FORMULA
T(n,k) = A066186(n) - A066186(k-1).
T(n,k) = Sum_{j=k..n} A138879(j).
EXAMPLE
For n = 5 the illustration shows five sets containing the last n-k+1 shells of 5 and below the sum of all parts of each set:
--------------------------------------------------------
. S{1-5} S{2-5} S{3-5} S{4-5} S{5}
--------------------------------------------------------
. The Last Last Last The
. five four three two last
. shells shells shells shells shell
. of 5 of 5 of 5 of 5 of 5
--------------------------------------------------------
.
. 5 5 5 5 5
. 3+2 3+2 3+2 3+2 3+2
. 4+1 4+1 4+1 4+1 1
. 2+2+1 2+2+1 2+2+1 2+2+1 1
. 3+1+1 3+1+1 3+1+1 1+1 1
. 2+1+1+1 2+1+1+1 1+1+1 1+1 1
. 1+1+1+1+1 1+1+1+1 1+1+1 1+1 1
. ---------- ---------- ---------- ---------- ----------
. 35 34 31 26 15
.
So row 5 lists 35, 34, 31, 26, 15.
.
Triangle begins:
1;
4, 3;
9, 8, 5;
20, 19, 16, 11;
35, 34, 31, 26, 15;
66, 65, 62, 57, 46, 31;
105, 104, 101, 96, 85, 70, 39;
176, 175, 172, 167, 156, 141, 110, 71;
270, 269, 266, 261, 250, 235, 204, 165, 94;
420, 419, 416, 411, 400, 385, 354, 315, 244, 150;
CROSSREFS
Mirror of triangle A212011. Column 1 is A066186. Right border is A138879.
Sequence in context: A094885 A240199 A094728 * A365904 A370290 A275473
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Apr 26 2012
STATUS
approved