login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211380
Number of pairs of intersecting diagonals in the interior and exterior of a regular n-gon.
2
0, 1, 5, 15, 42, 94, 189, 340, 572, 903, 1365, 1981, 2790, 3820, 5117, 6714, 8664, 11005, 13797, 17083, 20930, 25386, 30525, 36400, 43092, 50659, 59189, 68745, 79422, 91288, 104445, 118966, 134960, 152505, 171717, 192679, 215514, 240310, 267197, 296268, 327660
OFFSET
3,3
FORMULA
a(n) = 1/8*n*(n^3-11*n^2+43*n-58) for n even;
a(n) = 1/8*n*(n-3)*(n^2-8*n+19) for n odd.
a(n) = A176145(n) - A211379(n).
G.f.: x^4*(2*x^5-3*x^4-7*x^3-x^2-2*x-1) / ((x-1)^5*(x+1)^2). [Colin Barker, Feb 14 2013]
MAPLE
a:=n->piecewise(n mod 2 = 0, 1/8*n*(n^3-11*n^2+43*n-58), n mod 2 = 1, 1/8*n*(n-3)*(n^2-8*n+19), 0);
MATHEMATICA
Drop[CoefficientList[Series[x^4(2x^5-3x^4-7x^3-x^2-2x-1)/((x-1)^5(x+1)^2), {x, 0, 50}], x], 3] (* or *) LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {0, 1, 5, 15, 42, 94, 189}, 50] (* Harvey P. Dale, Dec 03 2022 *)
PROG
(Python)
def A211380(n): return n*(n*(n*(n-11)+43)-58+(n&1))>>3 # Chai Wah Wu, Nov 22 2023
CROSSREFS
Sequence in context: A080870 A288414 A102620 * A053731 A111295 A200760
KEYWORD
nonn,easy
AUTHOR
Martin Renner, Feb 07 2013
STATUS
approved