login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288414
Expansion of Product_{k>=1} (1 + x^k)^(sigma_2(k)).
11
1, 1, 5, 15, 41, 107, 286, 700, 1735, 4162, 9803, 22673, 51822, 116376, 258548, 567197, 1230763, 2642958, 5622616, 11850537, 24769248, 51353095, 105662389, 215838649, 437890022, 882562763, 1767741732, 3519599996, 6967592060, 13717874719, 26865949075
OFFSET
0,3
LINKS
FORMULA
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A288419(k)*a(n-k) for n > 0.
a(n) ~ exp(2^(5/4) * (7*Zeta(3))^(1/4) * Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - 5^(1/4) * Pi * n^(1/4) / (2^(13/4) * 3^(7/4) * (7*Zeta(3))^(1/4))) * (7*Zeta(3))^(1/8) / (2^(15/8) * 15^(1/8) * n^(5/8)). - Vaclav Kotesovec, Mar 23 2018
G.f.: Product_{i>=1, j>=1} (1 + x^(i*j))^(j^2). - Ilya Gutkovskiy, Aug 26 2018
MAPLE
with(numtheory): seq(coeff(series(mul((1+x^k)^(sigma[2](k)), k=1..n), x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 31 2018
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[2, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2017 *)
PROG
(PARI) m=40; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^sigma(k, 2))) \\ G. C. Greubel, Oct 30 2018
(Magma) m:=40; R<q>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+q^k)^DivisorSigma(2, k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
CROSSREFS
Product_{k>=1} (1 + x^k)^sigma_m(k): A107742 (m=0), A192065 (m=1), this sequence (m=2), A288415 (m=3).
Sequence in context: A113861 A337207 A080870 * A102620 A211380 A053731
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 08 2017
STATUS
approved