login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210960
Tetrahedron T(j,n,k) in which the slice j is a finite triangle read by rows T(n,k) which list the number of parts in the columns of the shell model of partitions with n shells mentioned in A210970.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 3, 3, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 2, 1, 1, 3, 4, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1
OFFSET
1,14
EXAMPLE
--------------------------------------------------------
Illustration of first five
slices of the tetrahedron Row sum
--------------------------------------------------------
. 1, 1
. 1, 1
. 1, 1, 2
. 1, 1
. 1, 1, 2
. 1, 1, 1, 3
. 1, 1
. 1, 1, 2
. 2, 1, 1, 4
. 1, 2, 1, 1, 5
. 1, 1
. 1, 1, 2
. 2, 1, 1, 4
. 2, 2, 1, 1, 6
. 1, 2, 2, 1, 1, 7
--------------------------------------------------------
. 1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 7, 6, 4, 2, 1,
.
It appears that column sums give A058399.
Also, written as a triangle read by rows in which each row is a flattened triangle, begins:
1;
1,1,1,
1,1,1,1,1,1;
1,1,1,2,1,1,1,2,1,1;
1,1,1,2,1,1,2,2,1,1,1,2,2,1,1;
1,1,1,2,1,1,3,2,1,1,3,3,2,1,1,1,3,3,2,1,1;
1,1,1,2,1,1,3,2,1,1,4,3,2,1,1,3,4,3,2,1,1,1,3,4,3,2,1,1;
In which row sums give A006128.
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Apr 22 2012
STATUS
approved