OFFSET
1,2
COMMENTS
Each slice of the tetrahedron is a triangle, thus the number of elements in the n-th slice is A000217(n). The slices are perpendicular to the slices of A026792. Each element of the n-th slice equals the volume of a column of the shell model of partitions with n shells. The sum of each row of the n-th slice is A000041(n). The sum of all elements of the n-th slice is A066186(n).
It appears that the triangle formed by the first column of each slice gives A058399.
Also consider a vertical rectangle on the infinite square grid with shorter side = n and longer side = p(n) = A000041(n). Each row of rectangle represents a partition of n. Each part of each partition of n is a horizontal rectangle with shorter side = 1 and longer side = k, where k is the size of the part. It appears that T(n,k,j) is also the number of k-th parts of all partitions of n in the j-th column of rectangle.
EXAMPLE
--------------------------------------------------------
Illustration of first five
slices of the tetrahedron Row sum
--------------------------------------------------------
. 1, 1
. 2, 2
. 1, 1, 2
. 3, 3
. 2, 1, 3
. 1, 1, 1, 3
. 5, 5
. 4, 1, 5
. 2, 2, 1, 5
. 1, 2, 1, 1, 5
. 7, 7
. 6, 1, 7
. 4, 2, 1, 7
. 2, 3, 1, 1, 7
. 1, 2, 2, 1, 1, 7
--------------------------------------------------------
. 1, 3, 1, 6, 2, 1,12, 5, 2, 1,20, 8, 4, 2, 1,
.
Written as a triangle begins:
1;
2, 1, 1;
3, 2, 1, 1, 1, 1;
5, 4, 1, 2, 2, 1, 1, 2, 1, 1;
7, 6, 1, 4, 2, 1, 2, 3, 1, 1, 1, 2, 2, 1, 1;
In which row sums give A066186.
CROSSREFS
KEYWORD
nonn,tabf,more
AUTHOR
Omar E. Pol, Mar 25 2012
STATUS
approved