login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209993
Number of 2 X 2 matrices with all elements in {0,1,...,n} and determinant in {-1,0,1}.
1
1, 16, 45, 94, 159, 248, 349, 478, 623, 792, 973, 1182, 1423, 1672, 1933, 2238, 2559, 2888, 3261, 3630, 4063, 4504, 4925, 5374, 5935, 6456, 6957, 7534, 8159, 8728, 9453, 10062, 10767, 11480, 12141, 12942, 13855, 14584, 15325, 16174, 17183
OFFSET
0,2
COMMENTS
See A210000 for a guide to related sequences.
LINKS
FORMULA
For n > 1, a(n) - a(n-1) = 1 + 4 * n + 8 * A000010(n) + 4 * A018804(n). - Robert Israel, Jan 07 2024
MAPLE
pillai:= proc(n) local i; add(igcd(i, n), i=1..n) end proc:
T:= 16: R:= 1, 16:
for n from 2 to 50 do
v:= 1 + 4*n + 8*numtheory:-phi(n) + 4*pillai(n);
T:= T + v;
R:= R, T;
od:
R; # Robert Israel, Jan 07 2024
MATHEMATICA
a = 1; b = n; z1 = 40;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, 1}]
Table[c1[n, 1], {n, 0, z1}] (* A209992 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 18 2012
STATUS
approved