login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 2 X 2 matrices with all elements in {0,1,...,n} and determinant in {-1,0,1}.
1

%I #17 Jan 08 2024 09:03:59

%S 1,16,45,94,159,248,349,478,623,792,973,1182,1423,1672,1933,2238,2559,

%T 2888,3261,3630,4063,4504,4925,5374,5935,6456,6957,7534,8159,8728,

%U 9453,10062,10767,11480,12141,12942,13855,14584,15325,16174,17183

%N Number of 2 X 2 matrices with all elements in {0,1,...,n} and determinant in {-1,0,1}.

%C See A210000 for a guide to related sequences.

%H Robert Israel, <a href="/A209993/b209993.txt">Table of n, a(n) for n = 0..10000</a>

%F For n > 1, a(n) - a(n-1) = 1 + 4 * n + 8 * A000010(n) + 4 * A018804(n). - _Robert Israel_, Jan 07 2024

%p pillai:= proc(n) local i; add(igcd(i,n),i=1..n) end proc:

%p T:= 16: R:= 1,16:

%p for n from 2 to 50 do

%p v:= 1 + 4*n + 8*numtheory:-phi(n) + 4*pillai(n);

%p T:= T + v;

%p R:= R,T;

%p od:

%p R; # _Robert Israel_, Jan 07 2024

%t a = 1; b = n; z1 = 40;

%t t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]

%t c[n_, k_] := c[n, k] = Count[t[n], k]

%t c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, 1}]

%t Table[c1[n, 1], {n, 0, z1}] (* A209992 *)

%Y Cf. A000010, A018804, A210000.

%K nonn

%O 0,2

%A _Clark Kimberling_, Mar 18 2012