login
A322343
Number of equivalence classes of convex lattice polygons of genus n.
14
16, 45, 120, 211, 403, 714, 1023, 1830, 2700, 3659, 6125, 8101, 11027, 17280, 21499, 28689, 43012, 52736, 68557, 97733, 117776, 152344, 209409, 248983, 319957, 420714, 497676, 641229, 813814, 957001, 1214030, 1525951, 1774058, 2228111, 2747973, 3184761
OFFSET
1,1
LINKS
Wouter Castryck, Moving Out the Edges of a Lattice Polygon, Discrete Comput. Geom., 47 (2012), p. 496-518, Column N in Table 1, p 512.
R. J. Koelman, The number of moduli families of curves on toric surfaces, Dissertation (1991), Chapter 4.2.
B. Poonen and F. Rodriguez-Villegas, Lattice polygons and the number 12, Am. Math. Mon. 107 (2000), no. 3, 238-250 (2000).
EXAMPLE
a(1) = 16 because there are 16 equivalence classes of lattice polygons having exactly 1 interior lattice point. See Pfoertner link.
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Dec 04 2018
EXTENSIONS
a(31) onwards from Justus Springer, Oct 25 2024
STATUS
approved