login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209805 Triangle read by rows: T(n,k) is the number of k-block noncrossing partitions of n-set up to rotations. 5
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 10, 10, 3, 1, 1, 3, 15, 25, 15, 3, 1, 1, 4, 26, 64, 64, 26, 4, 1, 1, 4, 38, 132, 196, 132, 38, 4, 1, 1, 5, 56, 256, 536, 536, 256, 56, 5, 1, 1, 5, 75, 450, 1260, 1764, 1260, 450, 75, 5, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

Like the Narayana triangle A001263 (and unlike A152175) this triangle is symmetric.

The diagonal entries are 1, 1, 4, 25, 196, 1764, ... which is probably sequence A001246 - the squares of the Catalan numbers.

The above conjecture about the diagonal entries T(2*n-1, n) is true since gcd(2*n-1, n) = gcd(2*n-1, n-1) = 1 and then T(2*n-1, n) simplifies to A001246(n-1) using the formula given below. - Andrew Howroyd, Nov 15 2017

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..1275

Tilman Piesk, Partition related number triangles (Wikiversity)

Tilman Piesk, Brute force MATLAB code used to calculate the rows (Pastebin)

FORMULA

T(n,k) = (1/n)*((Sum_{d|gcd(n,k)} phi(d)*A103371(n/d-1,k/d-1)) + (Sum_{d|gcd(n,k-1)} phi(d)*A103371(n/d-1,(n+1-k)/d-1)) - A132812(n,k)). - Andrew Howroyd, Nov 15 2017

EXAMPLE

Triangle begins:

  1;

  1,   1;

  1,   1,   1;

  1,   2,   2,   1;

  1,   2,   4,   2,   1;

  1,   3,  10,  10,   3,   1;

  1,   3,  15,  25,  15,   3,   1;

  1,   4,  26,  64,  64,  26,   4,   1;

  1,   4,  38, 132, 196, 132,  38,   4,   1;

  1,   5,  56, 256, 536, 536, 256,  56,   5,   1;

MATHEMATICA

b[n_, k_] := Binomial[n-1, n-k] Binomial[n, n-k];

T[n_, k_] := (DivisorSum[GCD[n, k], EulerPhi[#] b[n/#, k/#]&] + DivisorSum[GCD[n, k - 1], EulerPhi[#] b[n/#, (n + 1 - k)/#]&] - k Binomial[n, k]^2/(n - k + 1))/n;

Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Jul 01 2018, after Andrew Howroyd *)

PROG

(PARI)

b(n, k)=binomial(n-1, n-k)*binomial(n, n-k);

T(n, k)=(sumdiv(gcd(n, k), d, eulerphi(d)*b(n/d, k/d)) + sumdiv(gcd(n, k-1), d, eulerphi(d)*b(n/d, (n+1-k)/d)) - k*binomial(n, k)^2/(n-k+1))/n; \\ Andrew Howroyd, Nov 15 2017

CROSSREFS

Cf. A054357 (row sums), A001246 (square Catalan numbers).

Cf. A001263, A103371, A132812, A209612.

Sequence in context: A172479 A122085 A209612 * A238453 A066287 A059260

Adjacent sequences:  A209802 A209803 A209804 * A209806 A209807 A209808

KEYWORD

nonn,tabl

AUTHOR

Tilman Piesk, Mar 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 19:51 EST 2019. Contains 329879 sequences. (Running on oeis4.)