login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209804
a(n) = Sum_{d|n} d*3^(n*d).
2
3, 171, 59076, 172200087, 4236443047458, 900567812945319804, 1675095304614322707132768, 27469470562340107289343634221615, 3990838394187339929534246698449141509871, 5153775207320113310364614887146151186290992699106
OFFSET
1,1
COMMENTS
Equals the logarithmic derivative of A209495.
FORMULA
L.g.f.: Sum_{n>=1} -log(1 - 3^(n^2)*x^n).
L.g.f.: log( Sum_{n>=0} 3^(n^2)*x^n / Product_{k=1..n} (1 - 3^(k^2)*x^k) ).
EXAMPLE
L.g.f.: L(x) = 3*x + 171*x^2/2 + 59076*x^3/3 + 172200087*x^4/4 + ...
where exponentiation yields the g.f. of A209495:
exp(L(x)) = 1 + 3*x + 90*x^2 + 19953*x^3 + 43113141*x^4 + ...
MATHEMATICA
a[n_] := DivisorSum[n, # * 3^(n*#) &]; Array[a, 10] (* Amiram Eldar, Aug 22 2023 *)
PROG
(PARI) {a(n)=sumdiv(n, d, d*3^(n*d))}
(PARI) {a(n)=n*polcoeff(sum(m=1, n, -log(1 - 3^(m^2)*x^m +x*O(x^n))), n)}
(PARI) {a(n)=n*polcoeff(log(1+sum(m=1, n, 3^(m^2)*x^m/prod(k=1, m, 1-(3^k*x)^k+x*O(x^n)))), n)}
for(n=1, 15, print1(a(n), ", "))
CROSSREFS
Sequence in context: A032484 A119117 A136473 * A306401 A053930 A053920
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 13 2012
STATUS
approved