OFFSET
0,2
COMMENTS
This is to 5 as A209262 1 + 2*n^2 + 3*n^3 + 4*n^4 is to 4. The subsequence of primes begins: 257, 181889, 7448687, 16664801, a(60) = 3940495201.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
G.f. ( 1+9*x+182*x^2+302*x^3+105*x^4+x^5 ) / (x-1)^6 . - R. J. Mathar, Jan 17 2013
EXAMPLE
a(2) = 1 + 2*2^2 + 3*2^3 + 4*2^4 + 5*2^5 = 257.
MATHEMATICA
With[{c=1+Total[Table[k n^k, {k, 2, 5}]]}, Table[c, {n, 0, 30}]] (* Harvey P. Dale, Aug 01 2016 *)
PROG
(Maxima) makelist(1 + 2*n^2 + 3*n^3 + 4*n^4 +5*n^5, n, 0, 20); /* Martin Ettl, Jan 15 2013*/
(PARI) a(n)=1+2*n^2+3*n^3+4*n^4+5*n^5 \\ Charles R Greathouse IV, Oct 16 2015
(Magma) [1 + 2*n^2 + 3*n^3 + 4*n^4 + 5*n^5: n in [0..30]]; // G. C. Greubel, Jan 04 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Jan 14 2013
STATUS
approved