login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361185
Number of chordless cycles in the n X n rook complement graph.
1
0, 0, 15, 264, 1700, 6900, 21315, 54880, 123984, 253800, 480975, 856680, 1450020, 2351804, 3678675, 5577600, 8230720, 11860560, 16735599, 23176200, 31560900, 42333060, 56007875, 73179744, 94530000, 120835000, 152974575, 191940840, 238847364, 294938700
OFFSET
1,3
COMMENTS
Using the convention that chordless cycles have length >= 4.
All chordless cycles in the rook complement graph have a cycle length of either 4 or 6. - Andrew Howroyd, Mar 03 2023
LINKS
Eric Weisstein's World of Mathematics, Chordless Cycle
Eric Weisstein's World of Mathematics, Rook Complement Graph
FORMULA
a(n) = 2*binomial(n,2)*binomial(n,3) + 9*binomial(n,3)^2 + 12*binomial(n,4)*binomial(n,2). - Andrew Howroyd, Mar 03 2023
a(n) = (n - 2)*(n - 1)^2*n^2*(6*n - 13)/12.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: x^3*(15+159*x+167*x^2+19*x^3)/(1-x)^7.
MATHEMATICA
Table[(n - 2) (n - 1)^2 n^2 (6 n - 13)/12, {n, 20}]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 15, 264, 1700, 6900, 21315}, 20]
CoefficientList[Series[x^2 (15 + 159 x + 167 x^2 + 19 x^3)/(1 - x)^7, {x, 0, 20}], x]
PROG
(PARI) a(n) = 2*binomial(n, 2)*binomial(n, 3) + 9*binomial(n, 3)^2 + 12*binomial(n, 4)*binomial(n, 2) \\ Andrew Howroyd, Mar 03 2023
CROSSREFS
Sequence in context: A206230 A209263 A180832 * A013381 A013384 A013380
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Mar 03 2023
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Mar 03 2023
STATUS
approved