login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of chordless cycles in the n X n rook complement graph.
1

%I #12 Apr 19 2023 02:46:39

%S 0,0,15,264,1700,6900,21315,54880,123984,253800,480975,856680,1450020,

%T 2351804,3678675,5577600,8230720,11860560,16735599,23176200,31560900,

%U 42333060,56007875,73179744,94530000,120835000,152974575,191940840,238847364,294938700

%N Number of chordless cycles in the n X n rook complement graph.

%C Using the convention that chordless cycles have length >= 4.

%C All chordless cycles in the rook complement graph have a cycle length of either 4 or 6. - _Andrew Howroyd_, Mar 03 2023

%H Andrew Howroyd, <a href="/A361185/b361185.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChordlessCycle.html">Chordless Cycle</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RookComplementGraph.html">Rook Complement Graph</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F a(n) = 2*binomial(n,2)*binomial(n,3) + 9*binomial(n,3)^2 + 12*binomial(n,4)*binomial(n,2). - _Andrew Howroyd_, Mar 03 2023

%F a(n) = (n - 2)*(n - 1)^2*n^2*(6*n - 13)/12.

%F a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).

%F G.f.: x^3*(15+159*x+167*x^2+19*x^3)/(1-x)^7.

%t Table[(n - 2) (n - 1)^2 n^2 (6 n - 13)/12, {n, 20}]

%t LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 15, 264, 1700, 6900, 21315}, 20]

%t CoefficientList[Series[x^2 (15 + 159 x + 167 x^2 + 19 x^3)/(1 - x)^7, {x, 0, 20}], x]

%o (PARI) a(n) = 2*binomial(n,2)*binomial(n,3) + 9*binomial(n,3)^2 + 12*binomial(n,4)*binomial(n,2) \\ _Andrew Howroyd_, Mar 03 2023

%Y Cf. A070968, A360854.

%K nonn

%O 1,3

%A _Eric W. Weisstein_, Mar 03 2023

%E Terms a(8) and beyond from _Andrew Howroyd_, Mar 03 2023