login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209265
a(n) = 1 + 2*n^2 + 3*n^3 + 4*n^4 +5*n^5 + 6*n^6 + 7*n^7.
3
1, 28, 1537, 21322, 145633, 659176, 2284273, 6565462, 16434817, 36993268, 76543201, 147907618, 270071137, 470178112, 785923153, 1268369326, 1985229313, 3024644812, 4499499457, 6552300538, 9360664801, 13143443608, 18167522737
OFFSET
0,2
FORMULA
G.f.: ( 1 + 20*x + 1341*x^2 + 9754*x^3 + 16595*x^4 + 6960*x^5 + 607*x^6 + 2*x^7 ) / (1-x)^8. - R. J. Mathar, Jan 22 2013
EXAMPLE
a(2) = 1 + 2*2^2 + 3*2^3 + 4*2^4 +5*2^5 + 6*2^6 + 7*2^7 = 1537.
MATHEMATICA
Table[Total[Table[i*n^i, {i, 2, 7}]]+1, {n, 0, 30}] (* or *) LinearRecurrence[ {8, -28, 56, -70, 56, -28, 8, -1}, {1, 28, 1537, 21322, 145633, 659176, 2284273, 6565462}, 30] (* Harvey P. Dale, Sep 26 2016 *)
PROG
(Maxima) makelist(1 + 2*n^2 + 3*n^3 + 4*n^4 +5*n^5 + 6*n^6 + 7*n^7, n, 0, 20); /* Martin Ettl, Jan 25 2013 */
(PARI) for(n=0, 30, print1(1 + sum(k=2, 7, k*n^k), ", ")) \\ G. C. Greubel, Jan 05 2018
(Magma) [1 + 2*n^2 + 3*n^3 + 4*n^4 + 5*n^5 + 6*n^6 + 7*n^7: n in [0..30]]; // G. C. Greubel, Jan 05 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Jan 14 2013
STATUS
approved