OFFSET
1,3
COMMENTS
For a discussion and guide to related arrays, see A208510.
As triangle T(n,k) with 0<=k<=n, it is (0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (4, -1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 14 2012
FORMULA
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=2x*u(n-1,x)+2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = 2^k*A208343(n,k). - Philippe Deléham, Mar 05 2012
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) + 4*T(n-2,k-2), T(1,0) = 1, T(2,0) = T(3,0) = 0, T(2,1) = 4, T(3,1) = 2, T(3,2) = 12, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 14 2012
G.f.: (-1+x-2*x*y)*x*y/(-1+x+2*x*y-2*x^2*y+4*x^2*y^2). - R. J. Mathar, Aug 11 2015
EXAMPLE
First five rows:
1
0...4
0...2...12
0...2...8...40
0...2...8...40...128
First five polynomials v(n,x):
1
4x
2x + 12x^2
2x + 8x^2 + 40x^3
2x + 8x^2 + 40x^3 + 128x^4
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208747 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208748 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 02 2012
STATUS
approved