OFFSET
1,2
COMMENTS
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle T(n,k) given by (1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 16 2012
FORMULA
u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + v(n-1,x),
where u(1,x)=1, v(1,x)=1.
As DELTA-triangle with 0 <= k <= n: g.f.: (1-x+x^2-y*x^2-2*t^2*x^2)/(1-2*x+x^2-2*y*x^2-2*y^2*x^2). - Philippe Deléham, Mar 16 2012
As DELTA-triangle: T(n,k) = 2*T(n-1,k) - T(n-2,k) + 2*T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,1) = 1, T(2,0) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 16 2012
EXAMPLE
First five rows:
1;
2, 1;
3, 4, 2;
4, 11, 10, 2;
5, 24, 32, 16, 4;
First five polynomials v(n,x):
1
2 + x
3 + 4x + 2x^2
4 + 11x + 10x^2 + 2x^3
5 + 24x + 32x^2 + 16x^3 + 4x^4
From Philippe Deléham, Mar 16 2012: (Start)
(1, 1, -1, 1, 0, 0, ...) DELTA (0, 1, 1, -2, 0, 0, ...) begins:
1;
1, 0;
2, 1, 0;
3, 4, 2, 0;
4, 11, 10, 2, 0;
5, 24, 32, 16, 4, 0;
6, 45, 84, 72, 32, 4, 0; (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208749 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208750 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 02 2012
STATUS
approved