login
A279413
Triangle read by rows: T(n,k), n>=k>=1, is the number of isosceles triangles with integer coordinates that have a bounding box of size n X k.
11
0, 0, 4, 0, 2, 12, 0, 0, 6, 16, 0, 2, 4, 6, 24, 0, 0, 2, 8, 10, 28, 0, 2, 4, 2, 8, 6, 36, 0, 0, 2, 0, 6, 8, 10, 40, 0, 2, 4, 2, 12, 10, 8, 10, 56, 0, 0, 2, 4, 2, 4, 10, 8, 10, 60, 0, 2, 4, 2, 4, 2, 12, 6, 12, 6, 60, 0, 0, 2, 0, 2, 4, 6, 12, 6, 8, 14, 64, 0, 2
OFFSET
1,3
EXAMPLE
Triangle begins:
0
0, 4
0, 2, 12
0, 0, 6, 16
0, 2, 4, 6, 24
0, 0, 2, 8, 10, 28
0, 2, 4, 2, 8, 6, 36
0, 0, 2, 0, 6, 8, 10, 40
0, 2, 4, 2, 12, 10, 8, 10, 56
0, 0, 2, 4, 2, 4, 10, 8, 10, 60
0, 2, 4, 2, 4, 2, 12, 6, 12, 6, 60
0, 0, 2, 0, 2, 4, 6, 12, 6, 8, 14, 64
0, 2, 4, 2, 4, 6, 8, 10, 16, 14, 12, 14, 72
0, 0, 2, 0, 2, 4, 2, 8, 14, 4, 6, 12, 18, 76
0, 2, 4, 2, 4, 2, 8, 2, 8, 10, 16, 10, 12, 10, 84
0, 0, 2, 0, 6, 4, 2, 4, 6, 16, 6, 4, 10, 12, 14, 88
0, 2, 4, 2, 4, 2, 8, 2, 16, 6, 16, 10, 16, 6, 24, 10, 104
0, 0, 2, 0, 2, 0, 2, 4, 6, 4, 10, 12, 10, 12, 10, 12, 14, 100
0, 2, 4, 2, 4, 2, 12, 6, 4, 6, 12, 10, 20, 6, 12, 14, 16, 10, 124
0, 0, 2, 0, 2, 0, 2, 0, 2, 4, 6, 12, 10, 12, 10, 12, 18, 12, 10, 112
-----
Denote by 'o' the point adjacent to the two equal sides, and by 'x' the other two.
n=4, k=3:
...x x... .o.. ..o. x... ...x
o... ...o ...x x... ...x x...
...x x... x... ...x .o.. ..o.
So T(4,3)=6.
-----
n=4,k=4:
o... ...o .x.. ..x. o... ...o ..x. .x..
...x x... .... .... .... .... ...x x...
.... .... ...x x... ...x x... .... ....
.x.. ..x. o... ...o ..x. .x.. o... ...o
-
...x x... x... ...x o..x x..o x... ...x
.o.. ..o. .... .... .... .... .... ....
.... .... .o.. ..o. .... .... .... ....
x... ...x ...x x... x... ...x o..x x..o
So T(4,4)=16.
CROSSREFS
See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279418 for acute isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.
See A279432 for all triangles.
Sequence in context: A285750 A282279 A208333 * A208748 A134895 A318468
KEYWORD
nonn,tabl
AUTHOR
Lars Blomberg, Feb 16 2017
STATUS
approved