login
A208626
Number of Young tableaux with n 6-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
1
1, 1, 133, 87781, 140422657, 396803649991, 1672481205752413, 9493821912766657291, 67887185669916054862201, 583831478578178958083979415, 5839732221336989894541552143065, 66255973840780250383847420304675775, 836422943559727759153797800333684916889
OFFSET
0,3
COMMENTS
Also the number of (6*n-1)-step walks on 6-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_6) we have p_1<=p_2<=...<=p_6 or p_1>=p_2>=...>=p_6.
CROSSREFS
Column k=6 of A208615.
Sequence in context: A015264 A055579 A191715 * A061491 A274132 A252133
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Feb 29 2012
STATUS
approved