

A208626


Number of Young tableaux with n 6length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).


1



1, 1, 133, 87781, 140422657, 396803649991, 1672481205752413, 9493821912766657291, 67887185669916054862201, 583831478578178958083979415, 5839732221336989894541552143065, 66255973840780250383847420304675775, 836422943559727759153797800333684916889
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Also the number of (6*n1)step walks on 6dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_6) we have p_1<=p_2<=...<=p_6 or p_1>=p_2>=...>=p_6.


LINKS

Table of n, a(n) for n=0..12.


CROSSREFS

Column k=6 of A208615.
Sequence in context: A015264 A055579 A191715 * A061491 A274132 A252133
Adjacent sequences: A208623 A208624 A208625 * A208627 A208628 A208629


KEYWORD

nonn,walk


AUTHOR

Alois P. Heinz, Feb 29 2012


STATUS

approved



