login
A208623
Number of Young tableaux with 10 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
1
1, 1, 92378, 9134237407, 23086562828397479, 233018419345522155335125, 5839732221336989894541552143065, 289238439981484950348089838682686986479, 24486860959943276912563736137263132718929372619, 3201253130570381677843084208123022632287481960289725603
OFFSET
0,3
COMMENTS
Also the number of (10*n-1)-step walks on n-dimensional cubic lattice from (1,0,...,0) to (10,10,...,10) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n or p_1>=p_2>=...>=p_n.
CROSSREFS
Row n=10 of A208615.
Sequence in context: A318631 A194722 A140932 * A294857 A025042 A182657
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Feb 29 2012
STATUS
approved